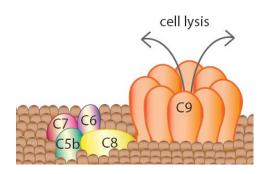


Anti-complement factor H autoantibodies and atypical haemolytic uremic syndrome

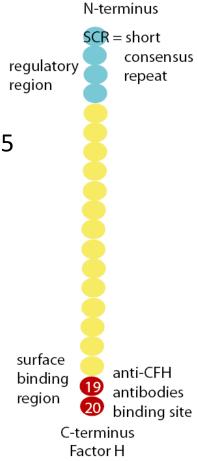

Haemolytic uremic syndrome (HUS) = microangiopathic haemolytic anaemia and consumptive thrombocytopenia and microvascular glomerular thrombosis, leads to renal failure

Types:

- →<u>Typical HUS</u>: **Diarrhea-associated HUS** mostly caused by Shiga-like toxin-producing *E.coli* (70-90% of patients)
- →Atypical HUS: non-diarrhea-associated HUS (aHUS), often caused by genetic mutations of complement genes — Factor H, Factor I, Factor B, MCP/CD46,C3 (10-15% of patients)
- **DEAP HUS: deficiency for CFHR proteins and Factor H autoantibodies** (11% of HUS patients)

Complement pathway – the defense mechanism of innate immunity against invading microbes and modified self cells

- → classical pathway Ag-Ab complexes (CRP)
- → lectin pathway microbial surfaces (mannose)
- → alternative pathway proactivation condition



Genetic mutations of complement proteins result in **defective** complement regulation

Type of affected gene is relevant for the disease outcome

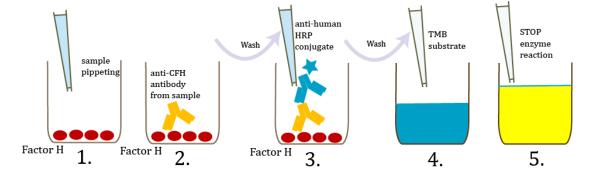
Factor H & anti-Factor H antibodies

- Factor H is a central inhibitor of alternative complement pathway
- → Anti-CFH autoantibodies in patients were first reported in 2005
- binding epitope C-terminal cell surface attachment region SCRs 19-20
- → autoantibodies block cell binding of Factor H which results in enhanced complement activation – enhanced cells damage (e.g. endotelial cells)
- → genetic analysis of the patients CFHR1 and CFHR3 deletion
- DEAP HUS therapy fresh frozen plasma infusion, plasma exchange, immunosuppresive therapy

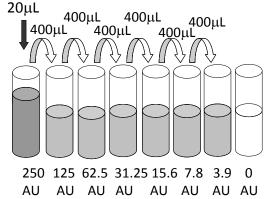
Anti-CFH antibodies detection

- → ELISA-VIDITEST anti-complement factor H
- → First CE IVD kit available

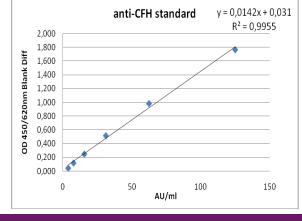
Kit components:


- ELISA Strips coated with Factor H
- Standard 10 000 AU/mL
- Anti-human HRP conjugate
- Dilution buffer
- Wash buffer
- TMB substrate
- STOP solution

Cat no. VID-ODZ-166


Test procedure

- → serum samples dilution 1:100
- standard dilution
- **→** ELISA


data processing

Standard anti-CFH IgG 10 000 AU/mL

absorbance reading

6.

ELISA-VIDITEST anti-complement factor H Evaluation study

Performed in The Institute of Hematology and Blood Transfusion (Prague) and VIDIA spol. s r.o

Samples:

Negative samples - serum and plasma samples from blood donors – 130 samples
Acquired thrombotic thrombocytopenic purpura (TPP) (acute stage) – 20 samples
Atypical HUS (with CFH or MCP mutation) – 8 samples
Inherited TPP – 5 samples
DEAP HUS (deficiency of CFHR plasma proteins and factor H autoantibody positive HUS) – 9 samples

Results:

Cut-off value for serum samples = 27 AU/mL Cut-off value for plasma samples = 18 AU/mL

Diagnostic sensitivity

DEAP-HUS samples: 9

Positive using anti-Complement factor H test: 9

Diagnostic sensitivity: 9/9 = 100%

Diagnostic specificity

Blood donors samples: 130

Negative using anti-Complement factor H test: 128

Diagnostic specificity: 128/130 = 98.5%

Anti-CFH IgG determination in patients with TPP, aHUS and DEAP HUS

- → high anti-CFH IgG concentration in DEAP HUS patients
- → low anti-CFH IgG concentration in other diseases clinically close to HUS

→ Final:

ELISA-VIDITEST anti-Complement factor H fulfil the requirements for the detection of anti-CFH antibodies and *in vitro* diagnostics of DEAP HUS

Disease	Patient	anti-CFH IgG (AU/mL)	other tests (ELISA, genetic testing)
		5 (, ,	, , , , ,
Acquired TPP	1	10	antibodies to ADAMTS13
	2	10	antibodies to ADAMTS13
	3	10	antibodies to ADAMTS13
	4	19	antibodies to ADAMTS13
	5	17	antibodies to ADAMTS13
	6	10	antibodies to ADAMTS13
	7	9	antibodies to ADAMTS13
	8	9	antibodies to ADAMTS13
	9	16	antibodies to ADAMTS13
	10	13	antibodies to ADAMTS13
	11	8	antibodies to ADAMTS13
	12	11	antibodies to ADAMTS13
	13	<4	antibodies to ADAMTS13
	14	7	antibodies to ADAMTS13
	15	22	antibodies to ADAMTS13
	16	6	antibodies to ADAMTS13
	17	22	antibodies to ADAMTS13
	18	20	antibodies to ADAMTS13
	19	12	antibodies to ADAMTS13
	20	9	antibodies to ADAMTS13
Atypical HUS	1	12	CFH deficiency
	2	11	MCP deficiency
	3	19	CFH deficiency
	4	10	CFH deficiency
	5	18	CFH deficiency
	6	17	CFH deficiency
	7	8	MCP deficiency
	8	8	MCP deficiency
l			
Inherited TPP	1	10	ADAMTS13 deficiency
	2	10	ADAMTS13 deficiency
	3	43	ADAMTS13 deficiency
	4	13	ADAMTS13 deficiency
	5	18	ADAMTS13 deficiency
DEAP-HUS	1	427	del CFHR1 homozyg
	2	251	del CFHR1 homozyg
	3	800	del CFHR1 homozyg
	4	232	del CFHR1 homozyg
	5	316	del CFHR1 homozyg
	6	403	del CFHR1 homozyg
	7	64	del CFHR1 homozyg
	8	53	del CFHR1 heteroyz
	9	79	del CFHR1 homozyg

has to be checked for CFHR 1/3 deletion